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to obtain a twisted cube. Gray and Karnin report simulation results to

show that these quantizers are superior. We did a straightforward (but

very expensive) numerical integration to get the following results listed

below. Notice that the best of these three does not have a representative
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SELECTING REPRESENTATIVE POINTS

IN NORMAL POPULATIONS

by

S. Iyengar and H. Solomon

The representation of a continuous random variable by several

q discrete points occurs often in applied probability problems. Quanti-

zation is the term applied to this procedure and optimal quantizers

have been sought by a number of investigators. This requires defining

suitabJe measures for the error inherent in the procedure and then

constructing quantizing procedures that minimize the expected error.

While the problems that motivate quantization are far ranging, the mathe-

matization leading to solutions is essentially always the same.

Most efforts are devoted to one dimensional random variables.

Obviously two, three, and higher dimensional variables can lead to more

intractability but in this paper we will explore some special cases in two

and three dimensions. The loss function we employ is that of mean square

error. Zador [1963,1982] explored the multivariate normal random vari-

able and its quantization by a random choice of representative points. He

does not restrict himself to mean square error; rather, he defines error
th

as the s power of the distance between the random variable and its

quantization and derives results about its asymptotic properties.

The IEEE very recently published a special issue on the topic of

quantization [1982] that collected quite recent work and work by Zador

and other investigators reported but not published as much as 25 years ago.

The papers in the issue arise out of an electrical engineering and information
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theory framework and ignore the efforts of workers in other disciplines

who in turn are unaware of the work of these authors.

For the one-dimensional normal random variable situation, there

are papers by Bofinger [1970] who studied the question of grouping a

continuous bivariate normal by selecting intervals on the marginals

that would provide the maximum possible correlation between the mar-

ginal variables and by Sitgreaves [1961] who arrived at the same bivariate

q model as Bofinger in connection with a psychometric query on optimal test

items for an achievement test. In each case, the univariate normal is

quantized in an optimal manner. Maximizing the correlation is equivalent

to minimizing mean square error in those cases. Previous workers also are

Cox 119571, and Anderberg 11973], each of whom seeks to sectionalize or

quantize the univariate normal for subsequent data analysis. Recently Fang

and He [19823, motivated by clothing size category representations provide

a detailed analysis for the univariate normal and give tables of represen-

tative points for N = 1,2,3,...,31. In an earlier paper in the electrical

engineering literature, Max (1960] gives representative points for

N=1,2 ,3 ,..., 2 6 . When tabled values of optimal representative points

and interval endpoints are listed there is consensus among the inves-

tigators where values can be compared.

A rather early paper on quantization is by Steinhaus [1956]. In

that paper, he demonstrates the two necessary (but not sufficient) condi-

tions for optimal quantization, namely, that the optimal representative

points are given by q, = E(XIXEQi) when mean squared error is the loss

function; and the optimal regions are nearest neighbor regions, namely

4

Qi = fx: Ix-qij rain 1x-qjf
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V Let us look into the ccmputation of the optimal quantization of a

continuous random variable, X. That is, we divide the real line into

N disjoint intervals IQ pick a representative point qieQi, and

define Q(X) = qwhenever XEQi. The loss of information is indicated

by, say (X-Q(X))2 , and we wish to minimize E(X-Q(X)) 2by choosing

Ii I n {q1 .1  appropriately. We now describe and compare the

q methods proposed by Lloyd [1957,1982] and Zador (1963,1982], and our

modification of Zador's method.

Lloyd notes that given the intervals fQ 1~the optimal represen-

[i 1

tative points are given by the centroids q E(X1XEQi). This is, of course,

a conzequence of the fact that we use mean squared error; if, instead

we used ElX-Q(X):' as our criterion, the optimal qi would be given

by the conditional median. He also notes that given {q i}N' the

optimal intervals are just the nearest neighbor regions, Q. = {x: jx-q.l <

min Ix-qJ} We have already noted that Steinhaus lists these two
l<i<l

conditions.

These two necessary conditions for an optimal quantization suggest

an iterative procedure. In particular, we start with points {q9 , a
1

4 and define the corresponding optimal intervals fQ)}; then we let

" i'l

q (2)od E(XXQe b We repeat this procedure until we have conver-

gence. One important question, then, is when does the procedure converge?

Lloyd presents a simple example to show that when the density of X is

bimodal, then the iterative procedure may converge to a local minimum

and not a global one. Kieffer [1982] has the following positive result:

IN

if the density of X is log-concave which is not ?iecewise affine on IR,

3



then this iterative procedure converges to the unique optimal points at

an exponential rate; that is, if q(N) (N 1,_ then ljq (N)q* 11 < aN

for all large N where q* is the optimal quantization and 0 <a < 1.

When X I, N(0,1), Lloyd gives a table of optimal points for N= 2,4,8,16

and the corresponding mean square errors. Our experience has shown that

the initial points should be chosen symmetrically about zero, else the

procedure converges much more slowly. For a table of the optimal represen-

tation points and errors, see the papers by Lloyd, Max, and Fang and He.

For future reference we write out the mean squared error when

X ' N(O,1). Let 6(x) and O(x) be the standard normal density and

distribution functions, respectively, and assume that ql < q2 < .. <

Then

E(X-Q(X))
2 = l-2EXQ(X) + EQ(X)

2

ql+q2 N-1 . qi+q,+l qi-qi_l"i+2qi¢( 2 ) +2 1 q ' 2 ( 2
2

q~ ~ q1+ 2  2 _____

q qN-l+qN q2 q +q 2 + q N(-2

N-1 2 f.qi+qi+ -(qi+qi_
+ Y 2 2

2

Zador proposes a random quantizer: the qi are chosen randomly

according to some density g. The mean squared error is then a random

variable and the probler, now is to choose g so that some aspect of the

distribution of the mean squared error is optimized. Zador shows that
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L2

N2  times the mean squared error has a limiting distribution and he

2 d
computes the mean of this limit; N (MSE ) - Z and EZ =pg g g g"

He then shows that by choosing g(x) = (x)/ ,i/3(t)dt, 9 is

minimized. It is clear that the optimality criterion chosen by Zador

is quite distinct from Lloyd's criterion. Random quantization in one

dimension is not a crucial issue. This is because optimal quantization

typically involves only one-dimensional integrals whose computation is

efficient. Optimal quantization in higher dimensions, though, rapidly

becomes expensive, and it is here that random quantization could be

valuable. However, since we know many results for the one-dimensional

case, it is of interest to see how random quantization compares in that

case. In the one-dimensional case, we now propose several improvements

over Zador's scheme.

First, choosing the asymptotically optimal g(x) = (il/3)4(xI/T)

may not do well for finite N. In fact, we shall show that in one

case, choosing g (x) = 1 -( ) with a = .545 yields substantial improve-
CY a a

ment. Second, it seems intuitively clear that the optimal points {qi }

ought to be located symmetrically about zero. Zador's scheme does not

guarantee this symmetry, but it is fairly easy to modify it to do so.

To illustrate these modifications, we do the analytically tractable

cases, N=2 and N=3.

When N=2, assuming q, < q2' we have that

2= 2 ql+q 2  2 ql+q 2  .ql+q2
E(X-Q(X))2  l+qlg + 2 ( 2 - 2(q2-ql) ( 2

ql+q 2 2 ql+q2
= l-2(q 2-ql) ( 2 ) + q2 - (q 2 -ql) (q 2+ql)D(- 2

5 
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b2

Under Zador's scheme, we generate Y1,Y2 i.i.d. N(O,O 2) and set

q, = Y(1 )' q2
= Y(2). Then the range (q2-ql) is clearly independent

of the mean (q,+q 2 )/2. Now let X1,X2 be i.i.d. N(0,1). Then

qd a q2 .a2EX2 2 2 Dt)td a2
(i) q2 = OX( 2 ) -> Eq 2 = 0 X(2) 22 f 2(t)C(t)dt -2

I (ii) E(q2-ql) -EIX 2-Xli = 2a/-W

(iii) E ( - E X) = 1/vr(2+G 2)
2 2

ql+q2) a oY2

(iv) E(ql+q 2)(2) = 2 E - X '(D X)
42- r2 2 (2+0 2 )

Collecting terms, we see that under Zador's scheme, MSE() = E(X-Q(X)) =

2 2cr 22is3 fowhh1+ a - 24 ; . The asymptotically optimal a is 3, for which

the mean square error is 1.53. Straightforward numerical work shows,

however, that MSE(a) is minimized for a = .545 and MSE(.545) = .77,

min

which is almost half of MSE(vT).
4

It is also of interest to know if we get much improvement if we force

the random points t,; be symmetric about the origin. In this case we

generate Y 'I, N(O,O 2) and let q, = -IYj, q2  1 YI- For this situation, the

mean squared error is E(+Y 2-4jYj/2)' = 1+2_- a, which is minimized

2 4
for a = and the minimum value is 1-- .59 A similar computation

7T 2

for N=3 (in which case ql=-IY. q2 = 0, and q3 = iYi) shows that

the mean square error assumes a minimum value of .41 for a = 1.32.
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We thus have the following short table:

Mean Squared Error

N Optimal Zador, 2.3 Zador r2i Symmetrized

2 .3634 1.53 0.77 0.59

3 .1902 .86 0.41

* Simulation

The results for N > 4 are analytically intractable. Also, the .86

entry above is a simulation result while all others are exact. The

1 optimal results for N=2, N=3 are known, Gray and Karnin [19K].

Before we turn to higher dimensional problems, we describe some

difficulties in the one dimensional normal case. One might naively expect

that the symmetry of the distribution requires that the points be located

symmetrically about zero. The conclusion is indeed true for the normal,

but the reason is not symmetry alone. To illustrate the difficulties here,

we consider the cases N=2 and N=3 for an arbitrary symmetric density f.

When N=2, we have, say

Sa if x<a+b
(x) 

2
Qab(X) - 'i fx

Qa bif x > a+b

-- 2

2

and we seek a and b to minimize E(X-Qab(X))2 . Differentiating this

expression with respect to a and b and setting the partial derivatives

equal to zero, we get

4 7
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a+b

2 (x-a)f(x)dx" 0

and

(x-b)f(x)dx =0

2

If we let h(a,b) = a+ b 2 (x-a)f(x)dx, then the two equations can be
_*00

rewritten as h(a,b) h(-b,-a) - 0. We can now say that if (a ,b*) pro-

vides an optimal quantization, then so does (-b *-a this seems to be

the only consequence of symmetry. In order to say that (a ,b ) lie symme-

trically about zero, we must have that h(a,b) = 0 has a unique solution.

One simple sufficient condition for this is that log f be strictly concave

(seeFleischer [1964], Trushkin [1982]). We conjecture that a weaker suffi-

cient condition is that f be unimodal and strictly decreasing from the

mode. Notice that one solution is always a = E(XIX< 0) and b*= E(XIX> 0)

If we require three points, one might invoke a symmetry argument to

say that one of the points be at the origin. However, the following intui-

tively clear example shows that this is not the case. Consider the following

class of symmetric bimodal densities:

h L E: L

-L-1 -L 0 L L+1

8



If E is very small, then there is virtually no mass between -L and

L. Thus, if we put one of the points at zero, we are wasting it. If

we put two points in the right mode and one in the left, we capture much

more information in the random variable. Of course, in this case, we can

reflect the asymmetrical quantization without changing the mean square

error. We omit the details of such a counterexample. The non-optimality

q of the symmetric quantizer is a feature of an odd number of point

The quantization of random vectors in Rd is in many ways a -

more difficult problem than that of ordinary random variables. 1

the "simplest" case of X n- N(O,I) presents many difficulties, as we

shall see. First of all, whenever the random variable has a spherically

symmetric density, any quantization can be rotated without changing the

mean square error. More precisely, we have the following lemma, which

is a generalization of the lemma of Gray and Karnin [1982].

Lemma. Suppose X has density f(x) - g(x'x) and Q(X) is any

quantizer. Then the family of quantizers {Qr(X)}r where Qr(X) - r 'Q(CX)

and r'r - I have the same mean square error.

d
Proof. Clearly X = rX. Thus,

Elx-r'Q(rx)12 - Ejr'(rx-Q(rx)) 12  Elrx-Q(rx)12 = EIx-Q(x)12

Thus, we should not consider the quantizations Q(X) and r'Q(rx) as

distinct.

As in the one-dimensional case, any quantization has two components,

the subsets {Qp 1  of d and the representative points r }N of

each subset. Because we use mean square error, we again have the

9



C following necessary conditions for the optimality of a quantizer:

(i) the representative point must be the centroid of the

respective subset: q E(XIXcQ i)

(ii) Qiis determined by the nearest neighbor rule:

Q {= x: I~x-qiU :S min jjx-qjj 1.

;.j

UJ
It is clear that if Q(X) satisfies (i) and (ii), then so does

r'Q(rx). Thus, fr'Q(rX)} are all fixed points of Lloyd's algorithm.

This is not the real source of the difficulty, however, In general,

there will be several distinct local minima. For example in the

normal case, if d = 2 and N 4, Gray and Karnin give the following

configurations which are fixed points of Lloyd's algorithm.

. ..

00

I i.II

They conjecture that these three are the only fixed points of the algorithm.

Standardizing the error - that is, considering -1 EIX-Q(X) 112, Gray and

Karnin show that the average errors are .3634, .5588, and .4102 for I,

II, and III respectively. We call configuration I the product quantizer

since it is the Cartesian product of the optimal one-dimensional

.10



_( quantizer with itself. Quantizer II performs rather poorly. Quantizer

III has the intuitive appeal that one point is located at the origin,

which is the mode of the distribution. Gray and Karnin comment that it

"was a surprise to us that the distortion resulting from [code III] was

so much larger than that of [code I]."

However, the intuition that says that one representative point

Ishould be at the origin because that is the location of the mode of

the distribution can be very misleading. Consider, for instance, the

problem of quantizing X I- N2 (O,I) with three points. Two configura-
4

tions immediately come to mind:

(0,0) and

(-Po) (11,o) b(1,0)

2' 2"

In the first case, the mean square error as a function of p is

MSEI(P) - EIX-Q(X) '12 EII 2 + EIj(X) 112 - 2EX'Q(X)

= 2+21j2 - ) 4ff xj(x) 4(y)dxdy

2P= 2 + 2112 (- " -4pb(-t

2121



To find the 11 that minimizes t" s, we set MSE 1(1) - 0 to get

R() =, where R(x) - 4(-x)/ (x) is Mills' ratio (for a more

thorough discussion of Mills' ratio, see Iyengar [1982]). Straight-

forward numerical work shows that the minimizing U is 1.224 and

1
that the average noise is - MSE1(1.224) = .5951.

The noise for the second configuration is

MSE(b) = 2 + b - 2EX'Q(X)

= 2+b 2 -2() xfY13.xb 4(y)i (x)dydx

2
= 2+b - 3Fr3 O(O)b

In this case our optimizing b is easily seen to be !!L- 0(0), so that

the average mean squared error is 1-27/16r = .4629. It is now clear

that the second configuration is considerably better than the first one,

even though the first one has a point at the origin. (Note that the two

configurations do satisfy the two necessary conditions for optimality;

we omit a formal proof.)

Quantization of a standard normal in three dimensions provides some

new interesting twists. If we use eight points, one obvious choice is

the product quantizer; the interesting result here is that the product

quantizer can be improved upon. Indeed, Gray and Karnin give three

different configurations that beat the product code. In one, there is

a point at the origin, two points lie symmetrically on a line orthogonal

to a plane formed by a pentagon whose vertices are the other five points.

4 Another quantizer, suggested by N.J.A. Sloane to Gray and Karnin [1982]

was obtained by rotating the top square of the product quantizer 
by 450

12
I



to obtain a twisted cube. Gray and Karnin report simulation results to

show that these quantizers are superior. We did a straightforward (but

very expensive) numerical integration to get the following results listed

below. Notice that the best of these three does not have a representative

point at the origin.

* Mean Square Error

Quantizer Simulation Numerical True
(Gray,Karnin) Integration

* Product - .3635 1-!= .3634
IT

Pentagon-origin-poles .3590 .3585

Twisted cube .3573 .3581

1

13
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